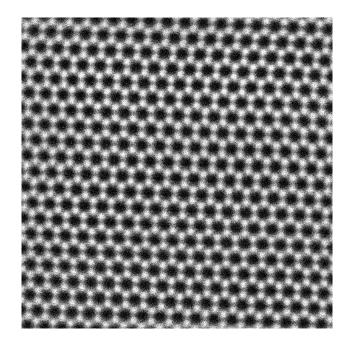
A general framework for topological phases with space-time symmetries

<u>Dominic Else</u> (UC Santa Barbara) Ryan Thorngren (UC Berkeley)

arXiv:1612.00846v6 [to appear in Phys. Rev. X]

I. Introduction


Topological phases with symmetries

Topological phase #1	Topological phase #2	Symmetry	Topological phase #1		SET	SET
Trivial phase	Topological phase #3	, <u>, , , , , , , , , , , , , , , , , , </u>	SPT	SPT	Topol phas	logical se #3

- Interesting symmetries:
 - Charge conservation U(1)
 - Time reversal
 - Spatial symmetries

SPT = symmetry-protected topological SET = symmetry-enriched topological

Spatial symmetries

- Crystals have spatial symmetries
 - 230 space groups in 3-D
- Free-fermion phases protected by space group symmetries: "Topological crystalling insulators"
 - "Topological crystalline insulators" (Liang Fu, 2011)
- Interacting topological phases with space group symmetries: ???

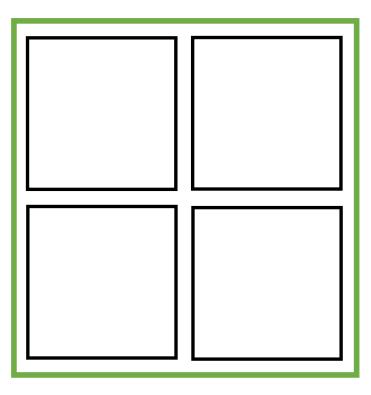
Crystalline equivalence principle:

It doesn't matter whether or not the symmetry acts spatially or not – the classification is the same!

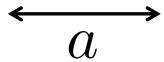
Topological phases for internal symmetries

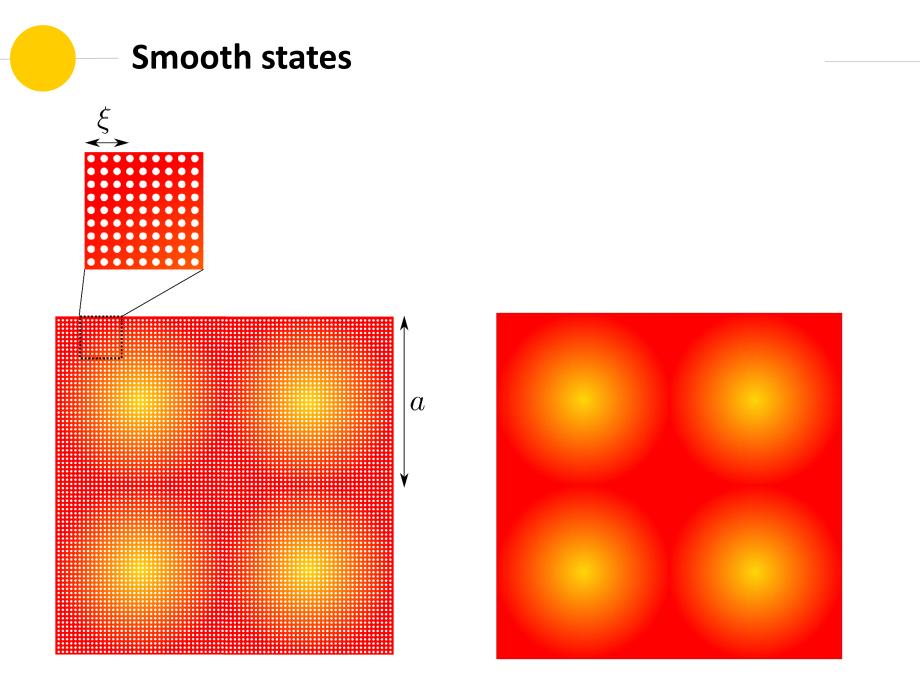
• For internal symmetries (e.g. charge conservation or time reversal), lots of beautiful theory

Bosonic SPTs: Group cohomology (Chen, Gu, Liu, Wen, 2011) Fermionic SPTs: Group supercohomology (Gu and Wen, 2012) SETs: G-crossed braided tensor categories


(Etingof et al, 2010; Barkeshli et al, 2014)

Topological quantum field theory


II. The general formalism

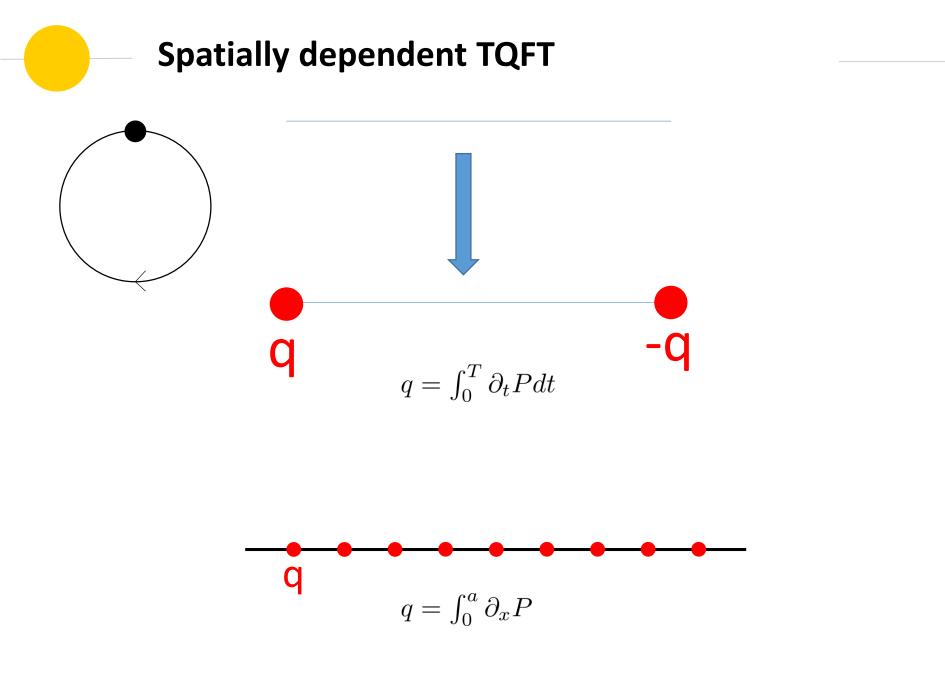


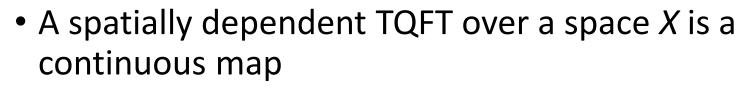
Lattice model

TQFT

Smooth state

Spatially dependent TQFT




• A spatially dependent TQFT over a space X is a continuous map

$$\sigma: X \to \{\text{space of TQFTs}\}$$

A TQFT is a monoidal functor $Bord_n \to C$ for some fixed target category CThe space of TQFTs is the geometric realization of the core of C

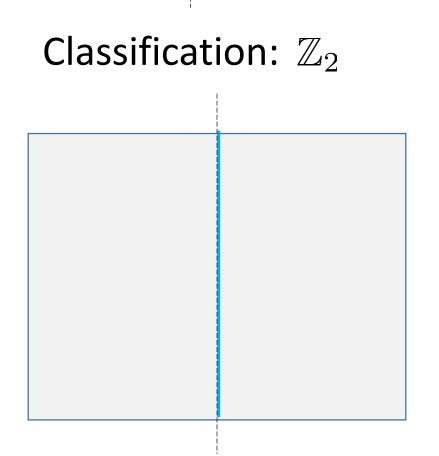
$$\sigma: X \to \{\text{space of TQFTs}\}$$

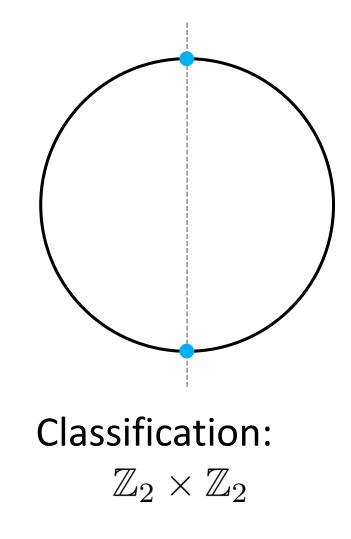
Theorem

Crystalline equivalence principle:

It doesn't matter whether or not the symmetry acts spatially or not – the classification is the same!

(If $X = \mathbb{R}^d$)


III. Some physical pictures


Equivariant cohomology Classification of bosonic SPT phases (Internal symmetries) classif. $\approx \mathcal{H}^{d+1}(G, U(1))$ $X = \mathbb{R}^d$ (Spatial symmetries) classif. $\approx \mathcal{H}_G^{d+1}(X, U(1))$ Spectral sequence [Song, Huang, Fu, Hermele, PRX '16]

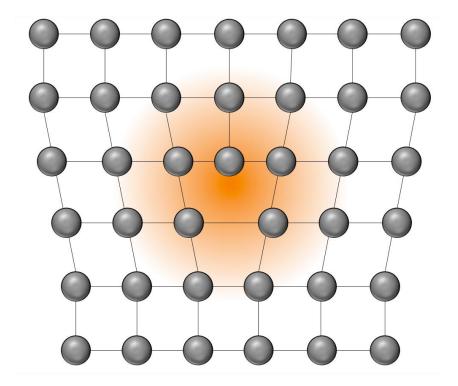
[Huang, Song, Huang, Hermele, arXiv:1705.09243]

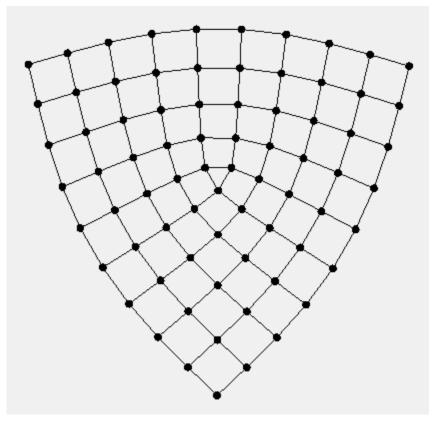
Examples of equivariant cohomology

[Song, Huang, Fu, Hermele, PRX '16] [Huang, Song, Huang, Hermele, arXiv:1705.09243]

Classification: $H^2(G_{int} \times \mathbb{Z}_2, U(1))$

Examples of equivariant cohomology


Gauging spatial symmetries

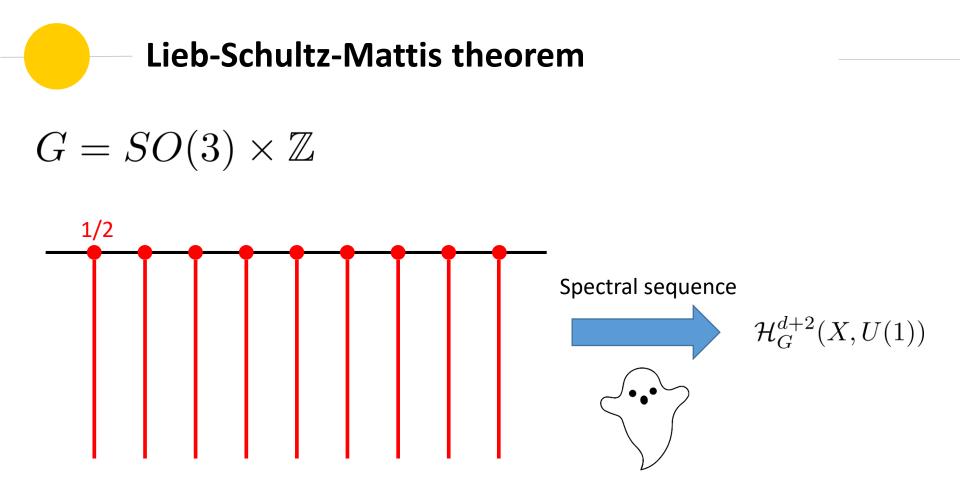

A spatially dependent TQFT over a space X is a continuous map

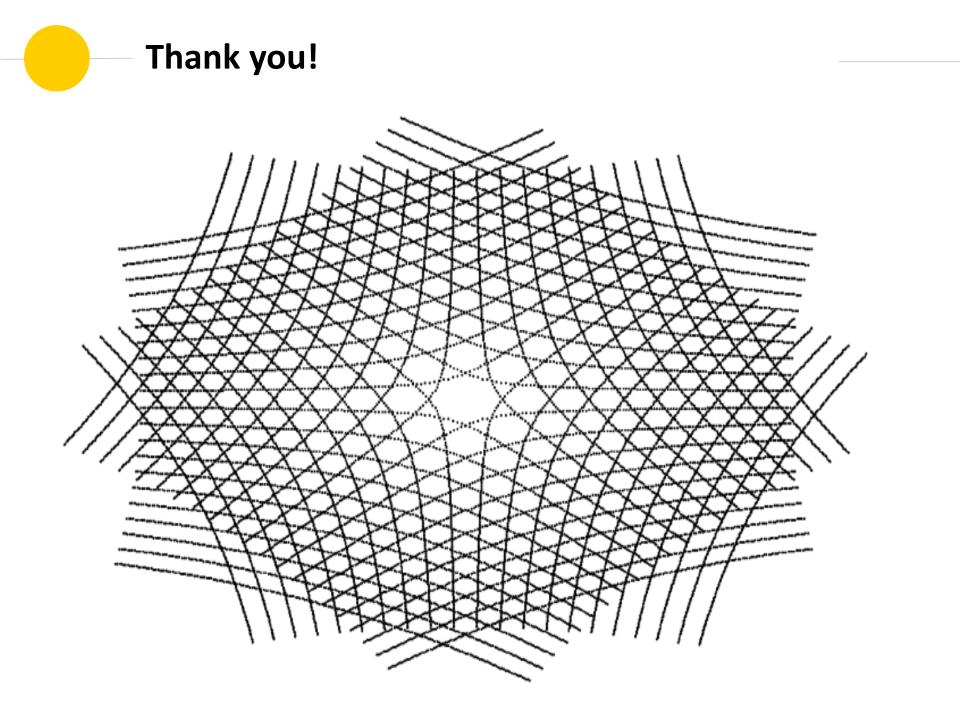
 $\sigma: X \to \{\text{space of TQFTs}\}$

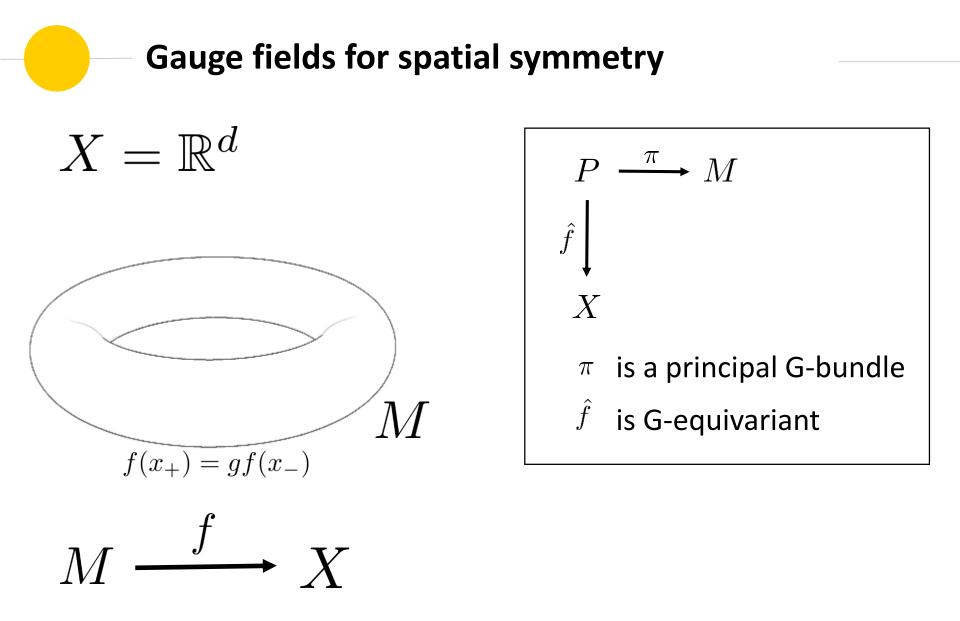
A spatially dependent TQFT with spatial symmetry
G is equivalent a TQFT with a background
"crystalline gauge field" (TQFTs can be "gauged").

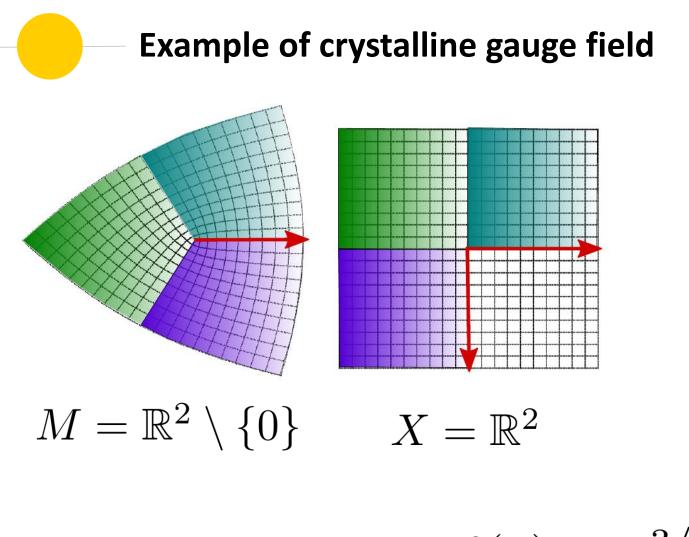
Gauge field for spatial symmetry

Dislocation = gauge flux for translational symmetry Disclination = gauge flux for rotational symmetry


Discrete gravitational response??


The 230-fold way


Number	Name	Classification	Number	Name	Classification]	Number	Name	Classification	
1	P1	0	40	Ama2	$\mathbb{Z}_{2}^{\times 3}$		79	14	$\mathbb{Z}_2 \times \mathbb{Z}_4$	
2	PΤ	$\mathbb{Z}_{2}^{\times 8}$	41	Aea2	\mathbb{Z}_2		80	$I4_1$	\mathbb{Z}_2	
3	P2	$\mathbb{Z}_2^{\times 4}$	42	Fmm2	$\mathbb{Z}_{2}^{\times 6}$		81	$P\overline{4}$	$\mathbb{Z}_2^{\times 3} \times \mathbb{Z}_4^{\times 2}$	
4	$P2_1$	0	43	Fdd2	\mathbb{Z}_2		82	14	$\mathbb{Z}_2^{\times 2} \times \mathbb{Z}_4^{\times 2}$	
5	C2	$\mathbb{Z}_{2}^{\times 2}$	44	Imm2	$\mathbb{Z}_{2}^{\times 8}$		83	P4/m	$\mathbb{Z}_2^{\times 12} \times \mathbb{Z}_4^{\times 2}$	
6	Pm	$\mathbb{Z}_{2}^{\times 4}$	45	Iba2	$\mathbb{Z}_2^{\times 2}$		84	$P4_2/m$	$\mathbb{Z}_2^{\times 11}$	
7	Pc	0	46	Ima2	$\mathbb{Z}_{2}^{\times 3}$		85	P4/n	$\mathbb{Z}_2^{\times 3} \times \mathbb{Z}_4^{\times 2}$	
8	Cm	$\mathbb{Z}_{2}^{\times 2}$	47	Pmmm			86	$P4_2/n$	$\mathbb{Z}_2^{\times 4} \times \mathbb{Z}_4$	
9	Cc	0	48	Pnnn	$\mathbb{Z}_{2}^{\times 10}$		87		$\mathbb{Z}_2^{\times 8} \times \mathbb{Z}_4$	
10	P2/m	$\mathbb{Z}_2^{\times 18}$	49	Peem	$\mathbb{Z}_{2}^{\times 17}$		88	$I4_1/a$	$\mathbb{Z}_2^{\times 3} \times \mathbb{Z}_4$	
11	$P2_1/m$	$\mathbb{Z}_{2}^{\times 6}$	50	Pban	$\mathbb{Z}_{2}^{\times 10}$		89	P422	$\mathbb{Z}_2^{\times 12}$	
12	C2/m	$\mathbb{Z}_2^{\times 11}$	51	Pmma	$\mathbb{Z}_{2}^{\times 17}$		90		$\mathbb{Z}_2^{\times 4} \times \mathbb{Z}_4$	
13	P2/c	$\mathbb{Z}_{2}^{\times 6}$	52	Pnna	$\mathbb{Z}_2^{\times 4}$		91	$P4_{1}22$	$\mathbb{Z}_2^{\times 3}$	
14	$P2_1/c$	$\mathbb{Z}_{2}^{\times 4}$	53	Pmna	$\mathbb{Z}_{2}^{\times 10}$		92	$P4_{1}2_{1}2$		
15	C2/c	$\mathbb{Z}_{2}^{\times 5}$	54	Pcca	$\mathbb{Z}_{2}^{\times 5}$		93	$P4_{2}22$	$\mathbb{Z}_2^{\times 12}$	
16	P222	$\mathbb{Z}_2^{\times 16}$	55	Pbam	$\mathbb{Z}_{2}^{\times 10}$		94	$P4_{2}2_{1}2$	$\mathbb{Z}_2^{\times 5}$	
17	$P222_{1}$	$\mathbb{Z}_2^{\times 4}$	56	Peen	$\mathbb{Z}_2^{\times 4}$		95	$P4_{3}22$	$\mathbb{Z}_2^{\times 3}$	
18	$P2_{1}2_{1}2$	$\mathbb{Z}_{2}^{\times 2}$	57	Pbcm	$\mathbb{Z}_{2}^{\times 5}$		96	$P4_{3}2_{1}2$	-	
19	$P2_{1}2_{1}2_{1}$	0	58	Pnnm	$\mathbb{Z}_{2}^{\times 9}$		97	I422	$\mathbb{Z}_2^{\times 8}$	
20	$C222_1$	$\mathbb{Z}_{2}^{\times 2}$	59	Pmmn	$\mathbb{Z}_{2}^{\times 10}$		98	$I4_{1}22$	$\mathbb{Z}_2^{\times 5}$	
21	C222	$\mathbb{Z}_{2}^{\times 9}$	60	Pbcn	$\mathbb{Z}_{2}^{\times 3}$		99	P4mm	$\mathbb{Z}_2^{\times 12}$	
22	F222	$\mathbb{Z}_{2}^{\times 8}$	61	Pbca	$\mathbb{Z}_2^{\times 2}$		100	P4bm	2 4	
23	I222	$\mathbb{Z}_{2}^{\times 8}$	62		$\mathbb{Z}_{2}^{\times 4}$		101	$P4_2cm$	$\mathbb{Z}_2^{\times 6}$	
24	$I2_12_12_1$	$\mathbb{Z}_{2}^{\times 3}$	63		$\mathbb{Z}_{2}^{\times 10}$		102	$P4_2nm$	$\mathbb{Z}_2^{\times 5}$	
25	Pmm2	$\mathbb{Z}_{2}^{\times 16}$	64	Cmce	$\mathbb{Z}_{2}^{\times 7}$		103	P4cc	$\mathbb{Z}_2^{\times 3}$	
26	$Pmc2_1$	$\mathbb{Z}_2^{\times 4}$	65	Cmmm			104	P4nc	$\mathbb{Z}_2 \times \mathbb{Z}_4$	
27	Pec2	$\mathbb{Z}_{2}^{\times 4}$	66		$\mathbb{Z}_{2}^{\times 13}$		105	$P4_2mc$	-	
28	Pma2	$\mathbb{Z}_2^{\times 4}$	67	Cmme	$\mathbb{Z}_{2}^{\times 17}$		106	$P4_2bc$		
29	$Pca2_1$	0	68	Ccce	$\mathbb{Z}_2^{\times 7}$		107	I4mm	$\mathbb{Z}_2^{\times 7}$	
30	Pnc2	$\mathbb{Z}_{2}^{\times 2}$	69	Fmmm	$\mathbb{Z}_{2}^{\times 20}$		108	I4cm	$\mathbb{Z}_2^{\times 4}$	
31	$Pmn2_1$	$\mathbb{Z}_{2}^{\times 2}$	70	Fddd	$\mathbb{Z}_{2}^{\times 6}$		109	$I4_1md$	$\mathbb{Z}_2^{\times 4}$	
32	Pba2	$\mathbb{Z}_{2}^{\times 2}$	71	Immm			110	$I4_1$ cd	\mathbb{Z}_2	
33	Pna2 ₁	0	72	Ibam	$\mathbb{Z}_2^{\times 10}$		111	$P\overline{4}2m$	$\mathbb{Z}_2^{\times 13}$	


93

 $P4_222 \quad \mathbb{Z}_2^{\times 12}$

 $f: M \to X \qquad f(z) = z^{3/4}$